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Nonlinear parametric instability in double-well lattices
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A possibility of a nonlinear resonant instability of uniform oscillations in dynamical lattices with harmonic
intersite coupling and onsite nonlinearity is predicted. Numerical simulations of a lattice with a double-well
onsite anharmonic potential confirm the existence of the nonlinear instability with an anomalous value of the
corresponding power index,'1.57, which is intermediate between the values 1 and 2 characterizing the linear
and nonlinear~quadratic! instabilities. The anomalous power index may be a result of a competition between
the resonant quadratic instability and nonresonant linear instabilities. The observed instability triggers transi-
tion of the lattice into a chaotic dynamical state.
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Dynamical lattices with onsite nonlinearity and harmon
intersite coupling constitute a vast class of models that h
numerous physical application and are an object of grea
terest in their own right, see, e.g., Ref.@1#. Among these
models, the ones with adouble-wellonsite potential@given,
e.g., by the expression~12! below# have special importance
as they directly apply to the description of structural tran
tions in dielectrics, semiconductors, superconductors,
optical lattices~see recent works@2# and references therein!,
and find other applications@3#.

The simplest dynamical state in lattices represents s
tially homogeneous oscillations. This state in conserva
lattice models is sometimes stable, and sometimes it is
ject to linear modulational instabilities initiating a transitio
to nontrivial dynamics@4#. An objective of the present work
is to demonstrate analytically, and verify by direct simu
tions, that homogeneous oscillatory states in lattices with
double-well anharmonicity may be subject to a specificnon-
linear instability, which triggers transition of the lattice into
chaotic dynamical state.

The nonlinear parametric instability, which is a subject
this work, is inherently related to the phonon anharmoni
in the lattice. The instability is caused by a resonance invo
ing the uniform oscillations of the lattice and a second h
monic of the phonon mode. A possibility of a nonlinear i
stability of anintrinsic localized mode@5# in the lattice due
to the phonon anharmonism was first considered in Ref.@6#.
An opposite, and more common, type of the resonan
namely, between a strictly linear phonon mode and a hig
harmonic of an intrinsic localized mode is well known
give rise to a slow decay of the localized mode into phon
~see recent works@7# and references therein!.

The general form of the lattice equation of motion is

ün1 f ~un!un5un111un2122un , ~1!

where un are real dynamical variables on the lattice, t
overdot stands ford/dt, f (un) is a polynomial function ac-
counting for the onsite nonlinearity~in fact, nonpolynomial
functions can be considered too!, and the right-hand side o
the equation accounts for the intersite harmonic coupli
The linearized version of Eq.~1! gives rise to phonon mode
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un5Asin~kn2vt !, ~2!

with an arbitrary infinitesimal amplitudeA and the dispersion
relation v52usin(k/2)u inside the phonon band,v<2 ~by
definition, the frequencies are positive!.

A homogeneous oscillatory stateU0(t) is a time-periodic
solution to the equation

Ü01 f ~U0!U050 ~3!

with a fundamental frequencyV. The linear stability of the
homogeneous state is determined by a linearized equatio
small perturbationsdun , which is produced by the substitu
tion of un5U0(t)1dun into Eq. ~1!,

dün1@ f 8„U0~ t !…U0~ t !1 f „U0~ t !…#dun

5dun111dun2122dun . ~4!

In the mean-field approximation, one may describe phon
modes of the type~2! on top of the homogeneous oscilla
tions, replacing the coefficient in front ofdun on the left-
hand side of Eq. ~4! by its time-average valuev0

2

[^ f 8„U0(t)…U0(t)1 f „U0(t)…&. The corresponding disper
sion relation for the phonon modes acquires agapv0, so that

v25v0
214 sin2~k/2!, ~5!

which gives rise to the phonon band

v0
2<v2<41v0

2 ~6!

~if v0
2,0, the homogeneous oscillations are immediately

stable!.
Beyond this simple approximation, the Fourier decomp

sition of the coefficientf 8„U0(t)…U0(t)1 f „U0(t)… in Eq. ~4!
gives rise to parametrically driven terms; cos(mVt)•dun
with all integer values ofm. The linear parametric drive reso
nates with a perturbation frequencyv, i.e., it may give rise to
a resonant linear instability, under the conditionmV2v
5v, or

v5v res
(lin)[~m/2!V. ~7!
©2001 The American Physical Society02-1
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If any resonant frequency (m/2)V gets into the phonon ban
~6!, the homogeneous oscillatory state is expected to
modulationally unstable, otherwise the resonant linear in
bility does not take place.

In the latter case, it makes sense to seek for nonlin
parametric instabilities, the simplest of which may be gen
ated by a cubic term, or any higher-order one, in the on
nonlinearity. Indeed, the cubic term generates a nonlin
correction;U0(t)(dun)2 to Eq.~4!, which may be regarded
as a parametric drive that can give rise to anonlinearpara-
metric resonance under the conditionmV22v5v, or

v5v res
(nonlin)[~m/3!V, ~8!

wherem is an arbitrary integer different from a multiple of 3
cf. Eq. ~7! ~if m is a multiple of 3, the linear parametri
resonance takes place at the same frequency, so that the
linear resonance is insignificant!.

Of course, this description has a very approximate na
for two reasons. First, the phonon band~6! was defined in the
framework of the mean-field approximation, hence one c
not be sure in the accuracy of the predictions based on
comparison of the resonant frequencies with this band. S
ond, the full lattice model~1! may give rise to other insta
bilities, which are not related to the parametric resonan
Therefore, the above consideration should only be con
ered as a qualitative clue, and an actual possibility of
namical regimes dominated by the nonlinear resonance m
be checked by direct simulations.

Continuing the consideration, we note that, if none of
linear-resonance frequencies~7! gets into the renormalized
band ~6!, but a nonlinear-resonance frequency~8! can be
found inside the band, an evolution equation for the am
tude of the corresponding resonant-perturbation mode,dun
5A(t)cos(vrest)vn , with some spatial profilevn ~it may be,
for instance, the above-mentioned localized intrinsic mod!,
has a general form

dA/dt5CA2, ~9!

whereC is a constant that depends on a particular form
Eq. ~1! and the homogeneous solutionU0(t); cf. a similar
equation governing the nonlinear instability of the so-cal
embedded solitons@9#. A solution to Eq.~9! is

A5A0 /~12CA0t !, ~10!

whereA0 is the initial value of the perturbation amplitude.
drastic difference of the perturbation growth law~10! from
the exponential growth in the case of the linear instability
that the nonlinear instability is initially growing much slowe
than an exponential, and a characteristic time scale of
growth, ;1/(CA0), depends on the initial perturbationA0,
while in the case of the exponential growth it is a fix
constant. However, the nonlinear instability is se
accelerating, and, as a manifestation of that, Eq.~10! for-
mally predicts a singularity att51/(CA0). In reality, of
course, the singularity may not occur, as the above appr
mation, taking into regard the first nonlinear correction
Eq. ~4!, becomes irrelevant ifA(t) is too large. A natural
03760
e
a-

ar
r-
te
ar

on-

re

-
he
c-

e.
d-
-
st

e

i-

f

d

s

e

i-

conjecture, that will be corroborated by direct simulatio
below, is that the nonlinear instability leads to a chaotic d
namical state.

It is relevant to mention that, although nonlinear instab
ties are less common than the usual linear instability, th
occur and play an important role in many physical problem
as diverse as optical solitons in media with competing q
dratic and cubic nonlinearities@8#, Bose gases, plasma turbu
lence@9#, contact lines in flows, etc.@10#. In this work, we
will check the possibility of the nonlinear instability of th
homogeneous oscillations in the lattice model~1! with

f ~un!52un
21nun

4 , n.0, ~11!

which corresponds to the double-well onsite anharmonic
tential,

V~un!52un
4/41nun

6/6. ~12!

In this case, Eq.~3! can be solved in terms of elliptic func
tions, but an explicit result is very cumbersome.

As a typical example, we take homogeneous oscillatio
produced by Eq.~3! with n50.01 and initial conditions
U0(0)51 and U̇0(0)50. The variableU0 then performs
strongly anharmonic oscillations between the valu
(U0)min51 and (U0)max512.247 at the fundamental fre
quencyV51. 694, and the gap in the renormalized phon
spectrum~5! is calculated to bev053.518, so that the renor
malized band~6! is, in the mean-field approximation,

3.518,v,4.047. ~13!

Then, it is straightforward to check that all the linea
resonance frequencies~7! do not get into this band~the band
as whole fits between the linear resonant frequencies 3
and 4.240, which correspond tom54 and m55). On the
other hand, the nonlinear-resonance frequency~8! corre-
sponding tom57 is v res

(nonlin)53.957 3, which liesinside the
band ~13! @all the other frequencies given by Eq.~13! are
located outside the band#.

To directly test the instability, small perturbations of th
form

dun~0!5A0cos~2pp0n/N!, ~14!

whereN is the net number of sites in the lattice andp0 is an
integer, were added to the homogeneous oscillatory s
The lattice equations of motion were solved forN51000 and
periodic boundary conditions by means of the eighth or
explicit Runge-Kutta scheme with a stepsize control su
that the time step was dynamically changed within the ra
0.0520.3. It was checked that the relative~per site! error at
each step did not exceed 10210.

The simulations were performed for the perturbations~14!
with p0 taking values in the interval 1<p0<30. In all the
cases considered, results were quite similar. Here, we d
onstrate a typical example withp0520. Long-time evolution
initiated by the small perturbation~14! with A050.05 is dis-
played in Fig. 1 in the form of a set of plots showing th
2-2
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FIG. 1. The time dependenc
for selected Fourier amplitude
uUp(t)u, defined as per Eq.~15!.
The results are shown forp50,
p5p0 , p52p0, and p5p011,
where p0520. The lattice size is
N51000 ~with periodic boundary
conditions!, and the initial ampli-
tude of the perturbation isA0

50.05.
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temporal development of several components in the Fou
transform of the lattice field, which are defined as follows

Up~ t !5~2/N! (
n51

N

un~ t !exp~2ippn/N!, pÞ0;

U0~ t !5~1/N! (
n51

N

un~ t !. ~15!

It is obvious that the small perturbation triggers a transit
of the lattice into a chaotic state. Fully developed chaos,
a state in which all the lattice modes are involved into
chaotic motion, is attained att'22, when the phonon mod
with p5p011 gets chaotically excited too, see Fig. 1. T
further illustrate the transition to chaos, in Fig. 2 we ad
tionally show in detail, on the logarithmic scale, the grow
03760
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of the amplitudeuUp011(t)u. More detailed studies of the
established chaotic state may be of interest in their own rig
but this problem is beyond the scope of the present work

As concerns the nonlinear character of the instability
crucial issue is the growth of the perturbation at the init
stage. It is necessary to check whether it is indeed essent
different from the familiar exponential law, being, instea
close to the Eq.~10!. To this end, in Fig. 3 we display the
best fit of the time evolution of the numerically compute
Fourier amplitudeuUp0

(t)u to a function

Afit~ t !5D~12gt !2a, ~16!

where the parameters are found to beD50.041, g50.560,
anda51.750.
FIG. 2. Details of the evolu-
tion of the Fourier amplitude
uUp011(t)u, shown on the loga-
rithmic scale.
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Comparison of these results with Eq.~10! shows a differ-
ence in the~most essential! power parametera. Note that the
expression~16! with the empirically found valuea51.750
formally corresponds to a solution to the nonlinear evolut
equation dA/dt5CAb, with an anomalous value of th
power index,b[11a21'1.5714, that should be compare
to Eq. ~9!, valid in case of the ordinary nonlinear instabili
@9#. This anomalous value is sort of intermediate betwe
b51 andb52, which are expected for the linear and no
linear instabilities, respectively. This result may suggest th

FIG. 3. Fitting the time dependence of the amplitudeuUp0
(t)u to

the function~16! with D50.0411, g50.560, anda51.750. Dia-
monds stand for numerical data, and stars~which almost completely
overlap with the diamonds! show the closest values provided by th
fitting function.
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in fact, in the present model we have a competition betw
the resonant nonlinear instability, qualitatively consider
above, and linear instabilities againstnonresonantperturba-
tions, which were not taken into regard in the above cons
eration. While an accurate analysis of the full linear stabil
problem of the homogeneous oscillations is a technica
complex problem, that we do not aim to consider here, Fig
clearly shows that the resonant nonlinear instability dom
nates in the growth of the perturbations.

In conclusion, we have proposed a possibility of a nonl
ear resonant instability of homogeneous oscillations in h
monically coupled nonlinear lattices, which is expected
play a dominant role, provided that no resonant freque
accounting for the linear parametric resonant instability g
into the renormalized phonon band, while a frequency t
gives rise to a quadratic parametric resonance is found in
band. Numerical simulations of the lattice with a double-w
onsite anharmonic potential confirm the existence of non
ear instability with an anomalous value of the power ind
'1.57, which is intermediate between the values 1 and
characteristic of the linear and nonlinear instabilities. T
onset of the nonlinear instability triggers transition of t
lattice into a chaotic dynamical state.

A valuable discussion with P.G. Kevrekidis is acknow
edged. B.A.M. appreciates the hospitality of the Departm
of Theoretical Physics at the Palacky´ University ~Olomouc,
the Czech Republic!. E.M. acknowledges partial support b
Grant No. 202/01/1450 from the agency GACR and
VEGA No. 2/7174/20.
d

@1# J. Leon and M. Manna, J. Phys. A32, 2845~1999!.
@2# A.B. Shick, J.B. Ketterson, D.L. Novikov, and A.J. Freema

Phys. Rev. B60, 15 484~1999!; M.B. Smirnov,ibid. 59, 4036
~1999!; F. Cordero, R. Cantelli, M. Corti, A. Campana, and
Rigamonti, ibid. 59, 12 078 ~1999!; D.L. Haycock, P.M.
Alsing, I.H. Deutsch, J. Grondalski, and P.S. Jessen, Phys.
Lett. 85, 3365~2000!.

@3# J.C. Comte, P. Marquie´, and M. Remoissenet, Phys. Rev. E60,
7484 ~1999!.

@4# J. Leon and M. Manna, Phys. Rev. Lett.83, 2324 ~1999!; Y.
Kosevich and S. Lepri, Phys. Rev. B61, 299 ~2000!.

@5# S. Aubry, Physica D103, 201 ~1996!; D. Hennig and G.P.
,

v.

Tsironis, Phys. Rep.307, 335 ~1999!.
@6# B.A. Malomed, Phys. Rev. B49, 5962~1994!.
@7# M. Johansson and S. Aubry, Phys. Rev. E61, 5864 ~2000!;

P.G. Kevrekidis and M.I. Weinstein, Physica D142, 113
~2000!.

@8# J. Yang, B.A. Malomed, and D.J. Kaup, Phys. Rev. Lett.83,
1958 ~1999!; A.R. Champneys, B.A. Malomed, J. Yang, an
D.J. Kaup, Physica D152-153, 340 ~2001!.

@9# P.K. Shukla, Phys. Rev. Lett.84, 5328~2000!.
@10# S. Khlebnikov, Phys. Rev. D62, 043519 ~2000!; J.A.

Krommes, Plasma Phys. Contr. Fusion41, A641 ~1999!; S.
Kalliadasis, J. Fluid Mech.413, 355 ~2000!.
2-4


