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Nonlinear parametric instability in double-well lattices
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A possibility of a nonlinear resonant instability of uniform oscillations in dynamical lattices with harmonic
intersite coupling and onsite nonlinearity is predicted. Numerical simulations of a lattice with a double-well
onsite anharmonic potential confirm the existence of the nonlinear instability with an anomalous value of the
corresponding power index; 1.57, which is intermediate between the values 1 and 2 characterizing the linear
and nonlineafquadrati¢ instabilities. The anomalous power index may be a result of a competition between
the resonant quadratic instability and nonresonant linear instabilities. The observed instability triggers transi-
tion of the lattice into a chaotic dynamical state.
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Dynamical lattices with onsite nonlinearity and harmonic u,=Asin(kn— wt), )
intersite coupling constitute a vast class of models that have
numerous physical application and are an object of great inwith an arbitrary infinitesimal amplitud& and the dispersion
terest in their own right, see, e.g., R¢L]. Among these relation w=2|sin(k/2)| inside the phonon bandy<2 (by
models, the ones with double-wellonsite potentia[given,  definition, the frequencies are positjve
e.g., by the expressioii2) below] have special importance, A homogeneous oscillatory stalti(t) is a time-periodic
as they directly apply to the description of structural transi-solution to the equation
tions in dielectrics, semiconductors, superconductors, and )
optical lattices(see recent workg2] and references thergin Ug+f(Ug)Uyp=0 3
and find other applications3].

The simplest dynamical state in lattices represents spavith a fundamental frequencf. The linear stability of the
tially homogeneous oscillations. This state in conservativdiomogeneous state is determined by a linearized equation for
lattice models is sometimes stable, and sometimes it is sutgmall perturbationsu,, which is produced by the substitu-
ject to linear modulational instabilities initiating a transition tion of u,=Ug(t) + du, into Eq. (1),
to nontrivial dynamicg4]. An objective of the present work .
is to demonstrate analytically, and verify by direct simula- U+ [/ (Ug(t))Uo(t) +f(Uo(t))]6up
tions, that homogeneous oscillatory states in lattices with the I P (4
double-well anharmonicity may be subject to a specifio- n+l n-1 n
Iinear_instability, which triggers transition of the lattice into & |, the mean-field approximation, one may describe phonon
chaotic dynamical state. - o , modes of the typd2) on top of the homogeneous oscilla-

_The non_lln_ear parametric instability, which is a subject_ Oftions, replacing the coefficient in front afu, on the left-
fthls Work_, is mher_ently _r_eIaFed to the phonon anharm_omsrrhand side of Eq.(4) by its time-average valuewé
in the lattice. The instability is caused by a resonance |nvoIv-E<f/(Uo(t))U0(t)+f(Uo(t))>- The corresponding disper-

ing the uniform oscillations of the lattice and a second har-_: : -
. X .7 'sion relation for the phonon m ireg@g h
monic of the phonon mode. A possibility of a nonlinear in- sion relation for the phonon modes acqu @o, SO that

stability of anintrinsic localized modg5] in the lattice due w?=wi+4 sir(k/2), (5)
to the phonon anharmonism was first considered in [éf.

An opposite, and more common, type of the resonancewhich gives rise to the phonon band

namely, between a strictly linear phonon mode and a higher

harmonic of an intrinsic localized mode is well known to w(z)s w’<4+ w(z) (6)
give rise to a slow decay of the localized mode into phonons
(see recent workg7] and references thergin (if wS<0, the homogeneous oscillations are immediately un-

The general form of the lattice equation of motion is stable.
Beyond this simple approximation, the Fourier decompo-
Up+ F(Up)Up=Up 1+ Upo1—2Up, (1)  sition of the coefficient’ (Uq(t))Uq(t) + f(Ug(t)) in Eq. (4)
gives rise to parametrically driven terms cosfm(t)-du,
where u, are real dynamical variables on the lattice, thewith all integer values ofn. The linear parametric drive reso-
overdot stands fod/dt, f(u,) is a polynomial function ac- nates with a perturbation frequenay i.e., it may give rise to
counting for the onsite nonlinearityn fact, nonpolynomial a resonantlinear instability, under the conditiom()— w
functions can be considered jo@nd the right-hand side of =, or
the equation accounts for the intersite harmonic coupling. (in)
The linearized version of Eq1) gives rise to phonon modes 0= g =(M/2)Q. (7)
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If any resonant frequencyn{/2){) gets into the phonon band conjecture, that will be corroborated by direct simulations
(6), the homogeneous oscillatory state is expected to bbelow, is that the nonlinear instability leads to a chaotic dy-
modulationally unstable, otherwise the resonant linear instanamical state.
bility does not take place. It is relevant to mention that, although nonlinear instabili-
In the latter case, it makes sense to seek for nonlinedies are less common than the usual linear instability, they
parametric instabilities, the simplest of which may be generoccur and play an important role in many physical problems,
ated by a cubic term, or any higher-order one, in the onsit@s diverse as optical solitons in media with competing qua-
nonlinearity. Indeed, the cubic term generates a nonlineadratic and cubic nonlinearitid8], Bose gases, plasma turbu-
correction~U(t) (8up)? to Eq.(4), which may be regarded lence[9], contact lines in flows, etd10]. In this work, we
as a parametric drive that can give rise taanlinearpara-  will check the possibility of the nonlinear instability of the
metric resonance under the condition) —2w= w, or homogeneous oscillations in the lattice mo@Bl with

w=o{l""M=m/3)Q, (8) f(up)=—u+vu?, v>0, (12)

wheremis an arbitrary integer different from a multiple of 3, which corresponds to the double-well onsite anharmonic po-
cf. Eq. (7) (if mis a multiple of 3, the linear parametric tential,
resonance takes place at the same frequency, so that the non-
linear resonance is insignificant V(u,)=— uﬁ/4+ vuﬁ/G. (12

Of course, this description has a very approximate nature
for two reasons. First, the phonon bai®iwas defined inthe In this case, Eq(3) can be solved in terms of elliptic func-
framework of the mean-field approximation, hence one cantions, but an explicit result is very cumbersome.
not be sure in the accuracy of the predictions based on the As a typical example, we take homogeneous oscillations
comparison of the resonant frequencies with this band. Segroduced by Eq.3) with »=0.01 and initial conditions
ond, the full lattice mode(1) may give rise to other insta- Uo(0)=1 and Uy(0)=0. The variableU, then performs
bilities, which are not related to the parametric résonanCesirongly anharmonic  oscillations between the values
Therefore, the above consideration should only be con3|d(U0)mm:1 and Ug)mam=12.247 at the fundamental fre-
ered as a qualitative clue, and an actual possibility of dy'quencyQ=1.694, and the gap in the renormalized phonon
namical regimes dominated by the nonlinear resonance MUghectrum(s) is calculated to ber,=3.518, so that the renor-

be checked by direct simulations. _ malized band®) is, in the mean-field approximation,
Continuing the consideration, we note that, if none of the

linear-resonance frequenci€®) gets into the renormalized 3.518< w<4.047. (13)
band (6), but a nonlinear-resonance frequen@ can be
found inside the band, an evolution equation for the amplithen jt is straightforward to check that all the linear-
tude of the corresponding resonant-perturbation mag,  resonance frequencié® do not get into this bandthe band
=A(t)cosred)vn, with some spatial profile, (it may be, 45 whole fits between the linear resonant frequencies 3.392
for instance, the above-mentioned localized intrinsic mode 5 4.240, which correspond to=4 andm=5). On the
has a general form other hand, the nonlinear-resonance frequety corre-

dA/di= CA2 (9  sponding tam=7 is w1 =3 957 3, which liesnsidethe

' band (13) [all the other frequencies given by E(L3) are

whereC is a constant that depends on a particular form ofocated outside the bahd _
Eq. (1) and the homogeneous solutithy(t); cf. a similar To directly test the instability, small perturbations of the
equation governing the nonlinear instability of the so-called®r™m
embedded soliton®]. A solution to Eq.(9) is
Suy(0)=Agcog2mpyn/N), (14
A=Ay/(1-CAyt), (10

whereN is the net number of sites in the lattice goglis an
whereA, is the initial value of the perturbation amplitude. A integer, were added to the homogeneous oscillatory state.
drastic difference of the perturbation growth l&®0) from  The lattice equations of motion were solved b+ 1000 and
the exponential growth in the case of the linear instability isperiodic boundary conditions by means of the eighth order
that the nonlinear instability is initially growing much slower explicit Runge-Kutta scheme with a stepsize control such
than an exponential, and a characteristic time scale of ththat the time step was dynamically changed within the range
growth, ~1/(CAy), depends on the initial perturbatigk,,  0.05-0.3. It was checked that the relatiyger sitg error at
while in the case of the exponential growth it is a fixed each step did not exceed 1¥.
constant. However, the nonlinear instability is self- The simulations were performed for the perturbatitivd
accelerating, and, as a manifestation of that, @€) for-  with p,y taking values in the interval < p,=<30. In all the
mally predicts a singularity at=1/(CAp). In reality, of  cases considered, results were quite similar. Here, we dem-
course, the singularity may not occur, as the above approxienstrate a typical example wighy=20. Long-time evolution
mation, taking into regard the first nonlinear correction toinitiated by the small perturbatiofi4) with Ag=0.05 is dis-
Eq. (4), becomes irrelevant iA(t) is too large. A natural played in Fig. 1 in the form of a set of plots showing the
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temporal development of several components in the Fourieof the amplitude|Up0+1(t)|. More detailed studies of the
transform of the lattice field, which are defined as follows: gstablished chaotic state may be of interest in their own right,

N but this problem is beyond the scope of the present work.
- ; . As concerns the nonlinear character of the instability, a
Up(t) (2/N)n§1 Un(t)eXp(2I mpI/N), p#0; crucial issue is the growth of the perturbation at the initial

stage. It is necessary to check whether it is indeed essentially
N different from the familiar exponential law, being, instead,
Uo(t)=(1/N) >, u,(t). (15  close to the Eq(10). To this end, in Fig. 3 we display the
n=1 best fit of the time evolution of the numerically computed

It is obvious that the small perturbation triggers a transition':Ourler ampl|tude}UpO(t)| to a function

of the lattice into a chaotic state. Fully developed chaos, i.e.,

a stat_e in V\(hlch_ all th_e lattice modes are involved into the An(t)=A(1—yt)~, (16)
chaotic motion, is attained at=22, when the phonon mode

with p=py+1 gets chaotically excited too, see Fig. 1. To

further illustrate the transition to chaos, in Fig. 2 we addi-where the parameters are found to be0.041, y=0.560,
tionally show in detail, on the logarithmic scale, the growthand a=1.750.

JUB,., (£ ]
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FIG. 2. Details of the evolu-
tion of the Fourier amplitude
1.x107 |Up,+1(t)|, shown on the loga-
rithmic scale.
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105, (£} | in fact, in the present model we have a competition between
the resonant nonlinear instability, qualitatively considered
above, and linear instabilities againgtnresonanperturba-

0.4 tions, which were not taken into regard in the above consid-
eration. While an accurate analysis of the full linear stability
problem of the homogeneous oscillations is a technically
complex problem, that we do not aim to consider here, Fig. 3
clearly shows that the resonant nonlinear instability domi-

0.2 nates in the growth of the perturbations.
In conclusion, we have proposed a possibility of a nonlin-
0.1 ear resonant instability of homogeneous oscillations in har-

monically coupled nonlinear lattices, which is expected to
. play a dominant role, provided that no resonant frequency
0.2 0.4 0.6 0.8 ! 12 accounting for the linear parametric resonant instability gets
FIG. 3. Fitting the time dependence of the amplitlidg ()| to into the renormalized phonon band, while a frequency that
the function(16) with A=0.0411, y=0.560, anda=1.750. Dia-  9IVeS rise toa qua.dratlc.parametrlc resonance is found in the
monds stand for numerical data, and starsich almost completely Pand. Numerical simulations of the lattice with a double-well
overlap with the diamondshow the closest values provided by the ONsite anharmonic potential confirm the existence of nonlin-
fitting function. ear instability with an anomalous value of the power index
~1.57, which is intermediate between the values 1 and 2,
characteristic of the linear and nonlinear instabilities. The
onset of the nonlinear instability triggers transition of the
lattice into a chaotic dynamical state.

Comparison of these results with E40) shows a differ-
ence in thgmost essentiapower parametew. Note that the
expression(16) with the empirically found valuer=1.750
formally corresponds to a solution to the nonlinear evolution
equation dA/dt=CA#, with an anomalous value of the A valuable discussion with P.G. Kevrekidis is acknowl-
power index,3=1+ a~ 1~1.5714, that should be compared edged. B.A.M. appreciates the hospitality of the Department
to Eq.(9), valid in case of the ordinary nonlinear instability of Theoretical Physics at the Palackiiversity (Olomouc,

[9]. This anomalous value is sort of intermediate betweernhe Czech Republjc E.M. acknowledges partial support by
B=1 andB=2, which are expected for the linear and non-Grant No. 202/01/1450 from the agency GACR and by
linear instabilities, respectively. This result may suggest thatYEGA No. 2/7174/20.
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